Autism Science

Neonatal Levels of Cytokines and Risk of Autism Spectrum Disorders: An Exploratory Register-based Historic Birth Cohort Study Utilizing the Danish Newborn Screening Biobank

Source: 
Journal of Neuroimmunology
Date Published: 
November 15, 2012
Abstract: 

"The aim of the study was to analyze cytokine profiles in neonatal dried blood samples (n-DBSS) retrieved from The Danish Newborn Screening Biobank of children developing Autism Spectrum Disorders (ASD) later in life and controls. Samples of 359 ASD cases and 741 controls were analyzed using Luminex xMAP technology and clinical data were retrieved from nationwide registers. Findings showed that children developing ASD were more likely to have decreased levels of both T helper-1(Th-1)-like cytokines (i.e. IFN-γ) and Th-2like cytokines (i.e. IL-4, IL-10) which may suggest a depressed or hypoactive immune cell activity during neonatal period in ASD."

Design of a Virtual Reality Based Adaptive Response Technology for Children with Autism

Source: 
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Date Published: 
January 4, 2013
Abstract: 

Results from this preliminary study suggest that an interactive virtual reality game can improve social communication skills in teens with ASD.

Modeling an Autism Risk Factor in Mice Leads to Permanent Immune Dysregulation

Source: 
Proceedings of the National Academy of Sciences
Date Published: 
July 31, 2012
Abstract: 

"Increasing evidence highlights a role for the immune system in the pathogenesis of autism spectrum disorder (ASD), as immune dysregulation is observed in the brain, periphery, and gastrointestinal tract of ASD individuals. Furthermore, maternal infection (maternal immune activation, MIA) is a risk factor for ASD. Modeling this risk factor in mice yields offspring with the cardinal behavioral and neuropathological symptoms of human ASD."

Placental Regulation of Maternal-fetal Interactions and Brain Development

Source: 
Developmental Neurobiology
Date Published: 
August 23, 2012
Abstract: 

"A variety prenatal insults are associated with the incidence of neurodevelopmental disorders such as schizophrenia, autism and cerebral palsy. While the precise mechanisms underlying how transient gestational challenges can lead to later life dysfunctions are largely unknown, the placenta is likely to play a key role. The literal interface between maternal and fetal cells resides in the placenta, and disruptions to the maternal or intrauterine environment are necessarily conveyed to the developing embryo via the placenta. Placental cells bear the responsibility of promoting maternal tolerance of the semiallogeneic fetus and regulating selective permeability of nutrients, gases, and antibodies, while still providing physiological protection of the embryo from adversity. The placenta's critical role in modulating immune protection and the availability of nutrients and endocrine factors to the offspring implicates its involvement in autoimmunity, growth restriction and hypoxia, all factors associated with the development of neurological complications. In this review, we summarize primary maternal-fetal interactions that occur in the placenta and describe pathways by which maternal insults can impair these processes and disrupt fetal brain development. We also review emerging evidence for placental dysfunction in the prenatal programming of neurodevelopmental disorders."

Predicting the Diagnosis of Autism Spectrum Disorder Using Gene Pathway Analysis

Source: 
Molecular Psychiatry
Date Published: 
September 11, 2012
Abstract: 

"The current investigation interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE) database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular processes and develop a diagnostic test. "

Maternal Autism-Associated IgG Antibodies Delay Development and Produce Anxiety In A Mouse Gestational Transfer Model

Source: 
Journal of Neuroimmunology
Date Published: 
November 15, 2012
Abstract: 

"A murine passive transfer model system was employed to ascertain the effects of gestational exposure to a single, intravenous dose of purified, brain-reactive IgG antibodies from individual mothers of children with autism (MAU) or mothers with typically developing children (MTD). Growth and behavioral outcomes in offspring were measured from postnatal days 8 to 65 in each group. Comparisons revealed alterations in early growth trajectories, significantly impaired motor and sensory development, and increased anxiety. This report demonstrates for the first time the effects of a single, low dose gestational exposure of IgG derived from individual MAU on their offspring's physical and social development."

An Integrated Encyclopedia of DNA Elements in the Human Genome

Source: 
Nature
Date Published: 
September 6, 2012
Abstract: 

"The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research."

Blood-based Gene Expression Signatures of Infants and Toddlers with Autism.

Source: 
Journal of the American Academy of Child and Adolescent Psychiatry
Date Published: 
September 2012
Abstract: 

"OBJECTIVE: Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with autism have yet emerged.

RESULTS: Potential ASD biomarkers were discovered in one-half of the sample and used to build a classifier, with high diagnostic accuracy in the remaining half of the sample."

Infant Neural Sensitivity to Dynamic Eye Gaze Is Associated With Later Emerging Autism

Source: 
Current Biology
Date Published: 
February 21, 2012
Abstract: 

"Autism spectrum disorders (henceforth autism) are diagnosed in around 1% of the population [1]. Familial liability confers risk for a broad spectrum of difficulties including the broader autism phenotype (BAP) [2, 3]. There are currently no reliable predictors of autism in infancy, but characteristic behaviors emerge during the second year, enabling diagnosis after this age [4, 5]. Because indicators of brain functioning may be sensitive predictors, and atypical eye contact is characteristic of the syndrome [6-9] and the BAP [10, 11], we examined whether neural sensitivity to eye gaze during infancy is associated with later autism outcomes [12, 13]. We undertook a prospective longitudinal study of infants with and without familial risk for autism. At 6-10 months, we recorded infants' event-related potentials (ERPs) in response to viewing faces with eye gaze directed toward versus away from the infant [14]. Longitudinal analyses showed that characteristics of ERP components evoked in response to dynamic eye gaze shifts during infancy were associated with autism diagnosed at 36 months. ERP responses to eye gaze may help characterize developmental processes that lead to later emerging autism. Findings also elucidate the mechanisms driving the development of the social brain in infancy."

A Stable Pattern of EEG Spectral Coherence Distinguishes Children with Autism From Neuro-typical Controls - A Large Case Control Study

Source: 
BMC Medicine
Date Published: 
June 26, 2012
Abstract: 

"BACKGROUND: The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact.

RESULTS: Total sample PCA [principal components analysis] of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz)."