Synapse

Synaptic Mutations Increase The Risk Of Autism Spectrum Disorders

Source: 
Medical News Today
Date Published: 
February 13, 2012
Abstract: 

A new study published in PLoS Genetics uses a combination of genetic and neurobiological approaches to confirm that synaptic mutations increase the risk of autism spectrum disorders (ASDs) and underlines the effect for modifier genes in these disorders.

Seizure Damage Reversed In Rats By Inhibitory Drug Targeting Neurologic Pathways

Source: 
Medical News Today
Date Published: 
December 19, 2011
Abstract: 

About half of newborns who have seizures go on to have long-term intellectual and memory deficits and cognitive disorders such as autism, but why this occurs has been unknown. In the December 14 Journal of Neuroscience, researchers at Children's Hospital Boston detail how early-life seizures disrupt normal brain development, and show in a rat model that it might be possible to reverse this pathology by giving certain drugs soon after the seizure.

Another Genetic Clue To Autism: Opposite Malfunctions Have Same Result

Source: 
Medical News Today
Date Published: 
November 25, 2011
Abstract: 

In most cases, autism is caused by a combination of genetic factors, but some cases, such as Fragile X syndrome, can be traced to a variation in a single gene that causes overproduction of proteins in brain synapses. Now a new study led by the same MIT neuroscientist who made that discovery, finds that tuberous sclerosis is caused by a malfunction at the opposite end of the spectrum: underproduction of the synaptic proteins.

Researchers debut SHANK2 mouse, SHANK3 rat

Source: 
SFARI
Abstract: 

Researchers debut the SHANK2 mouse and SHANK3 rat at the 2011 Society for Neuroscience annual meeting. SHANK2 belongs to the same family as SHANK3, a well-established autism candidate gene.

Autism Spectrum Disorder Linked to Genetic Synaptic Behaviors

Source: 
Medical News Today
Date Published: 
April 21, 2011
Abstract: 

It seems that the place where your brain transfers electricity between synapses and how your genes determine how these processes function, are tied to autism in one way or another. There can be genetically driven disturbances in this process that lead to varying levels of autism according to a new study of DNA from approximately 1,000 autistic children and their kin.

Common Genetic Cause of Autism and Epilepsy Discovered

Source: 
Science Daily
Date Published: 
April 8, 2011
Abstract: 

Led by the neurologist Dr. Patrick Cossette, the research team found a severe mutation of the synapsin gene (SYN1) in all members of a large French-Canadian family suffering from epilepsy, including individuals also suffering from autism.

Gene Linked to Severity of Autism's Social Dysfunction Identified

Source: 
Science Daily
Date Published: 
April 7, 2011
Abstract: 

With the help of two sets of brothers with autism, Johns Hopkins scientists have identified a gene associated with autism that appears to be linked very specifically to the severity of social interaction deficits. The gene, GRIP1 (glutamate receptor interacting protein 1), is a blueprint for a traffic-directing protein at synapses -- those specialized contact points between brain cells across which chemical signals flow.

MIT Researchers Recreate Autism in Mice

Source: 
Medical News Today
Date Published: 
March 20, 2011
Abstract: 

By mutating a single gene, researchers at MIT and Duke have produced mice with two of the most common traits of autism - compulsive, repetitive behavior and avoidance of social interaction. In this study, the researchers focused on one of the most common of those genes, known as shank3. Shank3 is found in synapses - the junctions between brain cells that allow them to communicate with each other. Feng, who joined MIT and the McGovern Institute last year, began studying shank3 a few years ago because he thought that synaptic proteins might contribute to autism and similar brain disorders, such as obsessive compulsive disorder.

Gene Variants in Autism Linked to Brain Development

Source: 
Journal of Molecular Psychiatry, Gai et al.
Date Published: 
March 2011
Year Published: 
2011

This research on the genomics of autism confirms that the genetic roots of the disorder are highly complicated, but that common biological themes underlie this complexity. In the current study, researchers have implicated several new candidate genes and genomic variants as contributors to autism, and conclude that many more remain to be discovered. While the gene alterations are individually very rare, they mostly appear to disrupt genes that play important functional roles in brain development and nerve signaling. While an association between genomic variants in certain nervous system processes and autism has been hypothesized in the past, this research definitively links these biological functions to autism. 

"This large study is the first to demonstrate a statistically significant connection between genomic variants in autism and both synaptic function and neurotransmission," said senior author Peter S. White, Ph.D., a molecular geneticist and director of the Center for Biomedical Informatics at The Children's Hospital of Philadelphia. Synapses are the contact points at which nerve cells communicate with other nerve cells, while neurotransmitters are the chemical messengers carrying those signals.

"Prior genomic studies of autism have successfully identified several genes that appear to confer risk for autism, but each gene appears to contribute to only a small percentage of cases," said the lead author, Xiaowu Gai, Ph.D. "Our approach considered whether groups of genes with common biological functions collectively accounted for a greater percentage of autism risk."

-- via Science Daily http://www.sciencedaily.com/releases/2011/03/110301111243.htm.

Investigating Synapse Formation and Function Using Human Pluripotent Stem Cell-Derived Neurons

Source: 
PNAS, Kim et al.
Date Published: 
February 2011
Year Published: 
2011

Researchers at the University of California at San Diego established procedures for the induced differentiation of human embryonic stem cells and human induced pluripotent stem cells into forebrain neurons that are capable of forming synaptic connections—communicating messages. The cells containing autism-associated mutations were not able to induce presynaptic differentiation in human induced pluripotent stem cell-derived neurons. Thus, autism-associated mutations hinder the ability of cells to trigger presynaptic differentiation—a crucial part of communication within the brain.