Research by Topic: Shank2

SFARI Gene

Published February 21, 2013 in SFARI

SFARI Gene is an integrated resource for the autism research community. It is a publicly available, curated, web-based, searchable database for autism research. This resource is built on information extracted from the studies on molecular genetics and biology of Autism Spectrum Disorders (ASD). The genetic information includes data from linkage and association studies, cytogenetic abnormalities, and specific mutations associated with ASD.

https://gene.sfari.org/autdb/Welcome.do

Filed under: , , , , , , , , , , , , ,


Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.

Published April 29, 2012 in PubMed

It is proposed that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.

http://www.ncbi.nlm.nih.gov/pubmed/22699619

Filed under: , , ,


Genetic and Functional Analyses of SHANK2 Mutations Suggest A Multiple Hit Model of Autism Spectrum Disorders

Published February 1, 2012 in PLOS Genetics

“Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n?=?396 patients and n?=?659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P?=?0.004, OR?=?2.37, 95% CI?=?1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P?=?0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.”

http://www.ncbi.nlm.nih.gov/pubmed/22346768

Filed under: , , , ,