- Home
- About ASF
- What is Autism?
- How Common is Autism?
- Signs and Symptoms of Autism
- Autism Diagnosis
- Following a Diagnosis
- Treatment Options
- Beware of Non-Evidence-Based Treatments
- Statement on Use of Medical Marijuana for People with Autism
- Autism and Vaccines
- Autism Science
- Quick Facts About Autism
- What We Fund
- Get Involved
- Resources
- COVID-19 Resources
- Day of Learning
- Contact Us
Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder
Published June 26, 2019
in Science
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
https://science.sciencemag.org/content/362/6420/eaat8127.long
Filed under: Autism Research, Autism Science, genetic, RNA, Schizophrenia