Determining the Role of Early Restrictive and Repetitive Behaviors in Downstream Autism Outcomes

Restricted and repetitive behaviors (RRBs) range from hand flapping to debilitating self-injury. This student will investigate the biological basis for the broad range of RRBs by examining the development of the circuits in an area of the brain called the striatum. Pictures of the brain will be collected and analyzed at multiple time points in individuals from 1-4 years of age and matched with the presence and type of RRBs and later outcomes, like real-world function or adaptive behavior. The results will help identify critical windows for brain development when intervention can be most beneficial.

Large gaps exist in healthcare for Black autistic children, yet the lived experiences of these families are rarely investigated or considered when designing research studies. This student will collect data from families, including information about their diagnostic experience and the factors that matter most to them. The results will help researchers and healthcare providers develop culturally competent interventions for Black families across the world.

Adults with profound autism have unique healthcare needs that are often overlooked by providers. This student will expand an existing project to add a cohort of middle and older-aged autistic adults in a residential facility to measure overall health, co-occurring conditions, healthcare quality & satisfaction, and quality of life. Determining how co-morbid health conditions change as autistic adults age will enable services to be delivered that better meet people’s needs.

Executive functioning is the ability to manage daily life, follow directions and handle emotions — and has been reported to be significantly impaired in individuals with ASD. This project will take advantage of an existing longitudinal study to examine the specific role and active ingredients of early intervention from ages 2-4 on executive functioning. The fellow will also examine whether demographic factors, including race and ethnicity, play a role in the effectiveness of the intervention.

The UBE3A gene is thought to be responsible for Dup15q Syndrome, one of the genetically derived autism spectrum disorders (ASD). Despite its clinical importance, we know very little about UBE3A distribution in the human brain. Most researchers assume it closely mirrors that of the rodent brain. This lack of knowledge could be catastrophic if the distribution of UBE3A in the human brain is improperly inferred from rodent studies and leads to inappropriate delivery and treatment strategies for autism. To assure the safe targeting of therapeutic approaches to normalizing UBE3A levels in individuals with Dup15q Syndrome, this fellow will study UBE3A developmental expression in the closest proxy we can get to the human brain – the brain of the rhesus monkey.

Given the historically higher prevalence of white males in autism research studies, many autism diagnostic and outcome instruments have not been specifically validated in people of color or in females. This study will recruit women and individuals from racially and ethnically diverse communities to understand how a measure of treatment outcome, called the BOSCC (Brief Observation of Social Communication Change), can be used more effectively in these communities.

Many autism referrals in low-resource settings originate from community mental health care clinics. Unfortunately, many mental health care providers are not trained in autism interventions and do not have the appropriate resources to provide support to parents or provide parent training for early developmental interventions. This fellow will work directly with ABA agencies that contract with Medicaid to determine how clinicians can better support parents participating in parent- mediated interventions.

Hypersensitivity to auditory stimuli, including even regular sounds and voices, is seen in a high percentage of people with autism. This project will expand on existing research at Vanderbilt looking at brain activity in autistic and non-autistic individuals with different levels of sound tolerance to understand the factors that play a role in the brain’s response to noise.