2018 Grantees

Postdoctoral Fellowships

Joon An, PhD | University of California, San Francisco

Mentor: Stephan Sanders, PhD

Determining the nature and function of the SCN2A mutation in ASD

SCN2A is a gene that encodes a sodium channel that is critical for communication between brain cells, and has been shown to be important for both ASD and infantile seizures. This study will first use an animal model to examine how disruption of SCN2A function at different times in development affects other genes known to play a role in autism. Dr. An will also work with collaborators at UCSF to compare the behavioral and medical features of people with this mutation and autism compared to those without an autism diagnosis. This will help identify the more precise role of this mutation in autism. Eventually, this model could be used to test therapies that might improve symptoms in both people with the SCN2 mutation and those with other causes of ASD.

This fellowship is supported through a partnership between the Autism Science Foundation and the Families SCN2A Foundation.

Laurel Joy Gabard-Durnam, PhD | Harvard University

Mentor: Charles Nelson, MD, PhD

Examining brain function during critical periods of development in ASD

There are particular periods in brain development that are more critical to the development of autism spectrum disorders. These critical periods represent times when the brain is particularly plastic. In order to understand these critical periods in neurodevelopmental disorders, Dr. Gabard-Durnam will analyze measures of brain activity and function at multiple times across development in children with autism and Rett Syndrome, and compare them to brainwave activity measurements from those who are typically-developing. This includes periods of regression in girls with Rett syndrome. This research will help inform the timing and biological targets for effective interventions and improve the quality of life for individuals with neurodevelopmental disorders and ASD.

This fellowship is supported through a partnership between the Autism Science Foundation and the Rett Syndrome Research Trust.

Aaron Gordon, PhD | University of California, Los Angeles

Mentor: Daniel Geschwind, MD, PhD

Identifying the converging genetic pathways across different forms of ASD

Due to advances in genetic technologies, more genetic mutations that lead to ASD are being identified. These newly-discovered, rare mutations are most often associated with higher levels of cognitive impairment and medical comorbidities. Little is known about how these genes affect brain development, how they interact with other autism genes, or how they lead to different outcomes in autism. This study will use stem cells to generate neurons from individuals with these rare genetic mutations to compare them to individuals with autism who don’t have these new-found mutations. This will allow scientists to investigate the development of brain cells and see commonalities and differences across the different forms of autism and enable the development of better therapies for all people with an autism diagnosis.

Whitney Guthrie, PhD | Children’s Hospital of Philadelphia

Mentor: Robert Schultz, PhD

Developing a novel method for early screening of autism using electronic medical records

Although most pediatricians agree that screening for ASD at 18 and 24 months of age is needed, it is clear that additional screening methods are necessary in order to identify every child with ASD as early as possible. This research will utilize electronic health records of more than 75,000 children at 9, 18, and 30 months of age, both with and without a later diagnosis of autism, to determine whether critical information on development, already available in the medical records, could help inform pediatricians of the early signs and symptoms of ASD before formal screening would occur. This could eventually lead to a clinical tool embedded in health records that would alert providers to a child’s risk for ASD, and allow clinicians to better evaluate children with these early developmental risk indicators.

Christine Ochoa Escamilla, PhD | University of Texas Southwestern Medical Center

Mentor: Peter Tsai, MD, PhD

Understanding the genetic influence of brain circuitry in ASD

Through studying the brains of people with autism, scientists have discovered a decrease in the number of Purkinje Cells, which are a type of neuron in the cerebellum. So far, animal models have not been able to selectively turn these particular neurons on and off to understand how they connect to other brain areas, like the cortex, to contribute to ASD. This study will utilize newer genomic technologies to deactivate Purkinje Cells in mice with a gene mutation associated with ASD. This will identify specific brain connections that are relevant for ASD and accelerate the design of targeted therapies based on particular brain circuits. Dr. Ochoa-Escamilla will continue her science training at UTSW by expanding on a project she began through an ASF fellowship last year.

Predoctoral Fellowships

Amy Ahn | University of Miami

Mentor: Daniel Messinger, PhD

Automating and accelerating the autism diagnostic process

New technology and advanced methodology have given scientists tools to better understand and measure the symptoms of autism. This may eventually lead to automated, clinical evaluations that would speed up the diagnostic process. This study will use a head-mounted camera to track early social behaviors during a structured evaluation for autism with a clinician. Researchers will evaluate an equal number of three-year-old boys and girls to determine if there are sex differences in these early social behaviors and social affect severity. This video and objective measurement will provide a way to measure and quantify ASD symptoms that may be useful for both categorization of different features of autism as well as developing gender-specific referral guidelines.

Cara Keifer, MA | Stony Brook University

Mentor: Matt Lerner, PhD

Explaining how the ASD brain works during social interactions

Youth with autism interpret, understand, and respond to the world differently than adults. This is especially evident in social situations when people are presented with various social cues. This project will look at brain activity before, during, and after the presentation of different social cues to better understand how and why the brains of people with autism work differently. The goal is to help clinicians understand how small differences in the way a person’s brain responds to social interaction could contribute to large differences in the way they interact with other people. Additionally, identifying the specific stages at which individuals with ASD demonstrate differences in social information processing will enable scientists to tailor treatments to have the biggest impact on behavior.

Julia Yurkovic | Indiana University

Mentor: Daniel Kennedy, PhD

Evaluating attentional deficits in ASD during real life situations

In order to better understand the attentional problems of those with autism, which are usually most apparent during naturalistic, unconstrained real-world interactions, researchers in this study will use a wearable eye tracking device to monitor attention in toddlers with autism. Specifically, researchers will be able to look at where the eyes are pointed when toddlers play with each other, with toys, and with their parents. Scientists will also be able to determine how toddlers coordinate their attention with their parents’. The results will improve targeted attention-based early intervention programs for ASD.

Accelerator Awards

Allison Jack, PhD | The George Washington University

Exploring oxytocin as a mechanism for sex-related differences in brain structure in autism

Under an NIH grant, Dr. Jack and her colleagues are examining differences in brain structure between males and females with autism. They have recently received funding to follow up these individuals to examine these changes at multiple times, including into adulthood, and have found differences in specific brain regions as well as responses to social stimuli between males and females. However, the underlying cause of the differences in brain structure and function is still unclear. Early studies on small samples suggest that epigenetic modification of the oxytocin receptor, which is important for social reward processes, explain some of these differences. This award will allow the analysis of epigenetic modifications of the oxytocin receptor in all 250 participants, which will provide important data to better understand why more males are diagnosed with autism compared to females, and why females with autism show different features of autism compared to males with autism.

Anne Roux, MPH, MA | Drexel University

Employment policy for youth with autism: Document analysis of WIOA state plans

Ms. Roux’s research at Drexel University, currently funded by the Organization for Autism Research, focuses on the study of how the use of vocational rehabilitation services influences employment outcomes on a state by state level for youth with autism. In July 2017, as this research was being conducted, state plans were approved for use of federal funding under the Workforce Innovation and Opportunity Act (WIOA). WIOA enables states to create unique strategies for delivering pre-employment transition programs for youth. The timing of the new WIOA state plans in the context of the study of state programs provides a unique opportunity for a natural experiment to determine the effect of changes in practices after the implementation of the new federal law. The ASF accelerator grant will allow her team to characterize the new programs emerging from WIOA on a state by state basis, and will establish metrics of autism-specific practices in each state. The accelerator funding will speed up the ability to identify what higher-performing states are doing well and inform the development of autism-specific practice guidelines.

Undergraduate Summer Research Grants

Ethan Gahr | Seattle Children’s Hospital

Mentor: Sara Jane Webb, PhD

Ethan will build upon a large NIH study examining why more males than females are diagnosed with autism. He will study brain activity in adults with autism and their undiagnosed siblings, focusing on undiagnosed sisters who may carry genetic liability for ASD but, for some reason, do not show clinical symptoms. His findings may help scientists understand why females are often underdiagnosed, and inform the development of more targeted interventions for females with ASD.

Evan Suzman | Vanderbilt University

Mentor: Tiffany Woynaroski, PhD

Evan will study infants known as “baby siblings” who have a high probability of an autism diagnosis because they have an older sibling with autism. Using this design, the group at Vanderbilt will look at early sensory features to determine how they relate to later social communication and language deficits. These findings may help shape early intervention techniques in infants with sensory issues.

Christina Layton | Seaver Autism Center at the Icahn School of Medicine, Mount Sinai

Mentor: Jennifer Foss-Feig, PhD

Christina will spend the summer at the Seaver Autism Center examining biological pathways in the brain that coordinate sensory information from the eyes, ears, and brain. Specifically, she will use brain activity measurements to see how disruptions in these pathways affect visual and auditory processing in people with autism. The results will identify how these biological measures explain symptom severity in people with autism, and may be used to complement behavioral measures to improve diagnosis of ASD.

Ryan Risgaard | University of Wisconsin, Madison

Mentor: Xinyu Zhao, PhD

Fragile X Syndrome is caused by mutation of the FMR1 gene that results in a reduction of FMRP protein. Low FMRP levels can cause cognitive disability, anxiety, hyperactivity, and autism. Ryan will be working with Dr. Zhao to examine new molecules that, when applied to certain cells, can reignite production of the FMRP protein. This project will provide critical information on new compounds that may ultimately be used to treat core symptoms of ASD.