Age and Gender Effects on Intrinsic Connectivity in Autism Using Functional Integration and Segregation

Background: The objective of this study was to examine intrinsic whole-brain functional connectivity in autism spectrum disorder (ASD) using the framework of functional segregation and integration. Emphasis was given to potential gender and developmental effects as well as identification of specific networks that may contribute to the global results.

Methods: We leveraged an open data resource (N = 1587) of resting-state functional magnetic resonance imaging data in the Autism Brain Imaging Data Exchange (ABIDE) initiative, combining data from more than 2100 unique cross-sectional datasets in ABIDE I and ABIDE II collected at different sites. Modularity and global efficiency were utilized to assess functional segregation and integration, respectively. A meta-analytic approach for handling site differences was used. The effects of age, gender, and diagnostic category on segregation and integration were assessed using linear regression.

Results: Modularity decreased nonlinearly in the ASD group with age, as evidenced by an increase and then decrease over development. Global efficiency had an opposite relationship with age by first decreasing and then increasing in the ASD group. Both modularity and global efficiency remained largely stable in the typically developing control group during development, representing a significantly different effect than seen in the ASD group. Age effects on modularity were localized to the somatosensory network. Finally, a marginally significant interaction between age, gender, and diagnostic category was found for modularity.

Conclusions: Our results support prior work that suggested a quadratic effect of age on brain development in ASD, while providing new insights about the specific characteristics of developmental and gender effects on intrinsic connectivity in ASD.

Keywords: ABIDE; Age; Autism; Functional connectivity; Functional integration; Gender.