Heterogeneity of neural mechanisms of response to pivotal response treatment

We investigated the mechanisms by which Pivotal Response Treatment (PRT) improves social communication in a case series of 10 preschool-aged children with Autism Spectrum Disorder (ASD). Functional magnetic resonance imaging (fMRI) identified brain responses during a biological motion perception task conducted prior to and following 16 weeks of PRT treatment. Overall, the neural systems supporting social perception in these 10 children were malleable through implementation of PRT; following treatment, neural responses were more similar to those of typically developing children (TD). However, at baseline, half of the children exhibited hypoactivation, relative to a group of TD children, in the right posterior superior temporal sulcus (pSTS), and half exhibited hyperactivation in this region. Strikingly, the groups exhibited differential neural responses to treatment: The five children who exhibited hypoactivation at baseline evidenced increased activation in components of the reward system including the ventral striatum and putamen. The five children who exhibited hyperactivation at baseline evidenced decreased activation in subcortical regions critical for regulating the flow of stimulation and conveying signals of salience to the cortex-the thalamus, amygdala, and hippocampus. Our results support further investigation into the differential effects of particular treatment strategies relative to specific neural targets. Identification of treatment strategies that address the patterns of neural vulnerability unique to each patient is consistent with the priority of creating individually tailored interventions customized to the behavioral and neural characteristics of a given person.



Interventions, Treatments and Services

Pamela Ventola