Searching for Cross-diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders

Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across neuropsychiatric conditions.

Keywords: Autism; Computational modeling; E/I balance; Mechanism; Neuroimaging; Review; Schizophrenia.