Adapting Biomarker Assays for Profound Autism

Individuals with profound autism have been historically underrepresented in research. Though profoundly autistic individuals make up roughly 27 percent of the ASD population, they represent only a small portion of research participants. Consequently, research findings in the field underrepresent profoundly autistic individuals. One of the most significant reasons for this underrepresentation is the need for research participants to follow spoken or written instructions and maintain engagement with a task. In this project researchers will test a novel interactive experimental delivery system that helps people participate in research without needing to understand complex instructions. The experiment uses computer vision systems that reward participants for sitting still and attending, rather than asking a participant to sit quietly and attend to a computer screen without incentive. Using this method, researchers will study two promising biomarkers, the balance of neural activity in the brain using electroencephalography (EEG) (which is associated with sensory sensitivity), and arousal using pupil diameter (which is associated with symptoms like disordered sleep and aggression). The goal is to develop a novel system for including profoundly autistic individuals in research.

Studies using wearable devices suggest that severe behaviors like aggression and self-injury are often preceded by physiological signs that may reflect emotional dysregulation and stress, such as increased heart rate and sudden movements. In order to best manage these situations and support children with profound autism in school settings, researchers at the University of Pennsylvania developed the KeepCalm app. This app works with a wearable device and allows educators to monitor their students in real-time. The app’s interactive learning feature helps train teachers to identify early signs of distress and use appropriate de-escalation strategies before injurious behavior occurs. This information can also be shared with parents, so that they can use the same strategies at home. This project will assess the KeepCalm system in educational teams and modify the application and training to specifically accommodate students with profound autism.

Vision problems, including far- and near-sightedness, affect up to 44% of children with autism. These deficits may lead to sensory deprivation and impair skills related to autism, including attention and communication. Refractive errors are usually corrected by the use of eyeglasses or contact lenses, but most individuals with profound autism cannot tolerate wearing them and may benefit from vision-correcting, refractive surgery. In this study, pediatric ophthalmologist Dr. Margaret Reynolds will examine social reciprocity, social interaction, and adaptive behavior in children with profound autism who have had this vision-correcting surgery. The methods used to track these outcomes do not rely on the child’s speech or language ability, so those who are non- or minimally-verbal can participate. While at present only a few doctors perform this surgery in children, this relatively simple medical procedure could lead to improved quality of life and function.

Restricted and repetitive behaviors (RRBs) range from hand flapping to debilitating self-injury. This student will investigate the biological basis for the broad range of RRBs by examining the development of the circuits in an area of the brain called the striatum. Pictures of the brain will be collected and analyzed at multiple time points in individuals from 1-4 years of age and matched with the presence and type of RRBs and later outcomes, like real-world function or adaptive behavior. The results will help identify critical windows for brain development when intervention can be most beneficial.

Large gaps exist in healthcare for Black autistic children, yet the lived experiences of these families are rarely investigated or considered when designing research studies. This student will collect data from families, including information about their diagnostic experience and the factors that matter most to them. The results will help researchers and healthcare providers develop culturally competent interventions for Black families across the world.

Adults with profound autism have unique healthcare needs that are often overlooked by providers. This student will expand an existing project to add a cohort of middle and older-aged autistic adults in a residential facility to measure overall health, co-occurring conditions, healthcare quality & satisfaction, and quality of life. Determining how co-morbid health conditions change as autistic adults age will enable services to be delivered that better meet people’s needs.

Project RISE, based at Lehigh University, is designed to develop new reading instruction strategies for people with intellectual and developmental disabilities.   The ASF accelerator grant will expand the focus of Project RISE by targeting a subset of the students who also have autism to investigate the unique needs of these students, as well as the knowledge, perception, and expectations of their teachers. This study will identify gaps in approaches designed to help autistic people learn to read, including how teachers deliver information to students.  It will also identify specific gaps in teacher training regarding working with autistic students.

This project is co-sponsored by the Solving the Mystery of Autism Foundation.

The Autism Biomarkers Consortium for Clinical Trials (ABC-CT) is a multicenter research study based at Yale that also includes Duke University, Boston Children’s Hospital, the University of Washington/Seattle Children’s Research Institute and the University of California, Los Angeles. The aim of the consortium is to develop reliable and objective measurements of social function and communication in people with autism, based on underlying neurobiological signals rather than on behavior. To date, measuring several of these biological signals (by both the ABC-CT and other research groups) as objective markers, has only taken place in a laboratory environment by showing participants videos on computers.   

Because many autistic individuals cannot sit still in a clinical setting, and because people normally don’t encounter the world in front of a computer,  it is not known if these biomarkers are valid in real-life settings. The ASF accelerator grant will enable researchers to expand their study by going out into the community with mobile biomarker measuring devices that allow participants to move freely rather than be tethered to a computer.  Data from this portion of the project will provide information about whether specific biomarkers are present in real-world settings. It will also enable researchers to access a broader diversity of participants. 

Self-injurious behaviors such as headbanging, scratching, and biting are common in individuals with profound autism but are poorly understood. Some of these behaviors may be responses to pain or discomfort caused by a pre-existing medical condition or unmet medical need, but this is difficult to assess in those with a limited ability to communicate. As a consequence, the medical needs of people with profound autism may not always be identified through routine healthcare visits.  Working with a large residential and day program service provider, this study will examine the relationship between medical conditions and self-injurious behaviors, and determine whether interventions addressing medical conditions could alleviate self-injurious behaviors. This project will also assess the feasibility, acceptability, and effectiveness of a new protocol designed to facilitate successful healthcare visits for people with profound autism.

Individuals with profound autism may sometimes exhibit neuropsychiatric regression, which can include catatonia, hyper aggression, and cognitive decline. This regression has been linked to infection in girls with Phelan McDermid Syndrome, a genetic condition associated with profound autism. There is some preliminary evidence linking the administration of anti-inflammatory drugs to the reversal of this regression. This animal model study will look at whether mice with the genetic mutation associated with Phelan McDermid Syndrome are more susceptible to the effects of inflammation-inducing drugs, and whether these effects can be mediated by inflammation-reducing drugs.

Sleep problems are highly prevalent in individuals with profound autism and exacerbate emotional disturbances, cognitive deficits, and challenging behaviors. Existing studies of sleep in autism have mostly excluded children with profound autism. This omission has been blamed on the added burden, expense, and difficulty of studying sleep in children with profound autism in a lab setting. This grant will expand a sleep study currently in progress to add a cohort of children with profound autism. The goal of the study is to validate the use of a minimally invasive headband device that measures sleep quality at home and provides data on specific brainwave patterns during different phases of sleep in people with autism vs. people without autism

Individuals with profound autism may use a number of methods to try to communicate, including augmentative and alternative communication (AAC) systems. These systems range from pictures and communication boards to speech-generating devices and iPads and have been shown to improve overall communication and promote spoken language development. However, these AAC systems are not always accessible to all families. Utilizing the population of patients at the Children’s Hospital of Los Angeles (of which 40% are uninsured and 65% are from an ethnically diverse background), this study will examine factors influencing access to and use of AAC systems.