Podcast: A potential biomarker to AID, not MAKE, a diagnosis

The media has just called another biological marker a “diagnostic test”, when in this case, it was always intended to be an aid, not a test itself. It involves using baby hair strands to look a variation in metabolism of certain chemical elements across time. Remarkably, it showed similar results in autistic children in Japan, the US and Sweden. It’s not ready to be used as a diagnostic test, so what is it supposed to do? Listen to an interview with the inventor and researcher, Dr. Manish Arora from The Icahn School of Medicine at Mt. Sinai School here.

The full article (open access) can be found here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740182/

Is there a specific “signature’ that make the autism brain unique? Can there be a common set of findings that certain gene expression goes up and another go down and where? And is it linked to behavior? This week, Dr. Michael Gandal at University of Pennsylvania (formerly UCLA) explains his recent findings that looks at the largest number of brain tissue samples so far from multiple brain regions to show a common up regulation of immune genes in the brain and a common down regulation of genes which control synapse formation and neuronal communication. It is most pronounced in areas involved in sensory processing of the brain. You can listen to the podcast today and read the whole paper here:


Background: Canonical babbling-producing syllables with a mature consonant, full vowel, and smooth transition-is an important developmental milestone that typically occurs in the first year of life. Some studies indicate delayed or reduced canonical babbling in infants at high familial likelihood for autism spectrum disorder (ASD) or who later receive an ASD diagnosis, but evidence is mixed. More refined characterization of babbling in the first year of life in infants with high likelihood for ASD is needed.

Methods: Vocalizations produced at 6 and 12 months by infants (n = 267) taking part in a longitudinal study were coded for canonical and non-canonical syllables. Infants were categorized as low familial likelihood (LL), high familial likelihood diagnosed with ASD at 24 months (HL-ASD) or not diagnosed (HL-Neg). Language delay was assessed based on 24-month expressive and receptive language scores. Canonical babble ratio (CBR) was calculated by dividing the number of canonical syllables by the number of total syllables. Generalized linear (mixed) models were used to assess the relationship between group membership and CBR, controlling for site, sex, and maternal education. Logistic regression was used to assess whether canonical babbling ratios at 6 and 12 months predict 24-month diagnostic outcome.

Results: No diagnostic group differences in CBR were detected at 6 months, but HL-ASD infants produced significantly lower CBR than both the HL-Neg and LL groups at 12 months. HL-Neg infants with language delay also showed reduced CBR at 12 months. Neither 6- nor 12-month CBR was significant predictors of 24-month diagnostic outcome (ASD versus no ASD) in logistic regression.

Limitations: Small numbers of vocalizations produced by infants at 6 months may limit the reliability of CBR estimates. It is not known if results generalize to infants who are not at high familial likelihood, or infants from more diverse racial and socioeconomic backgrounds.

Conclusions: Lower canonical babbling ratios are apparent by the end of the first year of life in ASD regardless of later language delay, but are also observed for infants with later language delay without ASD. Canonical babbling may lack specificity as an early marker when used on its own.

Competitive interactions have a vital role in the ecology of most animal species1-3 and powerfully influence the behaviour of groups4,5. To succeed, individuals must exert effort based on not only the resources available but also the social rank and behaviour of other group members2,6,7. The single-cellular mechanisms that precisely drive competitive interactions or the behaviour of social groups, however, remain poorly understood. Here we developed a naturalistic group paradigm in which large cohorts of mice competitively foraged for food as we wirelessly tracked neuronal activities across thousands of unique interactions. By following the collective behaviour of the groups, we found neurons in the anterior cingulate that adaptively represented the social rank of the animals in relation to others. Although social rank was closely behaviourally linked to success, these cells disambiguated the relative rank of the mice from their competitive behaviour, and incorporated information about the resources available, the environment, and past success of the mice to influence their decisions. Using multiclass models, we show how these neurons tracked other individuals within the group and accurately predicted upcoming success. Using neuromodulation techniques, we also show how the neurons conditionally influenced competitive effort-increasing the effort of the animals only when they were more dominant to their groupmates and decreasing it when they were subordinate-effects that were not observed in other frontal lobe areas. Together, these findings reveal cingulate neurons that serve to adaptively drive competitive interactions and a putative process that could intermediate the social and economic behaviour of groups.


Importance: Presence of developmental delays in autism is well established, yet few studies have characterized variability in developmental milestone attainment in this population.

Objective: To characterize variability in the age at which autistic individuals attain key developmental milestones based on co-occurring intellectual disability (ID), presence of a rare disruptive genetic variant associated with neurodevelopmental disorders (NDD), age at autism diagnosis, and research cohort membership.

Design: The study team harmonized data from 4 cross-sectional autism cohorts: the Autism Genetics Research Exchange (n = 3284; 1997-2015), The Autism Simplex Collection (n = 694; 2008-2011), the Simons Simplex Collection (n = 2753; 2008-2011), and the Simons Foundation Powering Autism Research for Knowledge (n = 10 367; 2016-present). The last sample further included 4145 siblings without an autism diagnosis or ID.

Participants: Convenience sample of 21 243 autistic individuals or their siblings without an autism diagnosis aged 4 to 17 years.

Main outcomes and measures: Parents reported ages at which participants attained key milestones including smiling, sitting upright, crawling, walking, spoon-feeding self, speaking words, speaking phrases, and acquiring bladder and bowel control. A total of 5295 autistic individuals, and their biological parents, were genetically characterized to identify de novo variants in NDD-associated genes. The study team conducted time-to-event analyses to estimate and compare percentiles in time with milestone attainment across autistic individuals, subgroups of autistic individuals, and the sibling sample.

Results: Seventeen thousand ninety-eight autistic individuals (mean age, 9.15 years; 80.8% male) compared with 4145 siblings without autism or ID (mean age, 10.2 years; 50.2% female) showed delays in milestone attainment, with median (IQR) delays ranging from 0.7 (0.3-1.6) to 19.7 (11.4-32.2) months. More severe and more variable delays in autism were associated with the presence of co-occurring ID, carrying an NDD-associated rare genetic variant, and being diagnosed with autism by age 5 years. More severe and more variable delays were also associated with membership in earlier study cohorts, consistent with autism’s diagnostic and ascertainment expansion over the last 30 years.

Conclusions and relevance: As the largest summary to date of developmental milestone attainment in autism, to our knowledge, this study demonstrates substantial developmental variability across different conditions and provides important context for understanding the phenotypic and etiological heterogeneity of autism.


Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection.


Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning–based predictive tests examined cerebellar–frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar–default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections.


Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections.


We failed to identify cerebellar functional connectivity–based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.

Background: Differences in face processing in individuals with ASD is hypothesized to impact the development of social communication skills. This study aimed to characterize the neural correlates of face processing in 12-month-old infants at familial risk of developing ASD by (1) comparing face-sensitive event-related potentials (ERP) (Nc, N290, P400) between high-familial-risk infants who develop ASD (HR-ASD), high-familial-risk infants without ASD (HR-NoASD), and low-familial-risk infants (LR), and (2) evaluating how face-sensitive ERP components are associated with development of social communication skills.

Methods: 12-month-old infants participated in a study in which they were presented with alternating images of their mother’s face and the face of a stranger (LR = 45, HR-NoASD = 41, HR-ASD = 24) as EEG data were collected. Parent-reported and laboratory-observed social communication measures were obtained at 12 and 18 months. Group differences in ERP responses were evaluated using ANOVA, and multiple linear regressions were conducted with maternal education and outcome groups as covariates to assess relationships between ERP and behavioral measures.

Results: For each of the ERP components (Nc [negative-central], N290, and P400), the amplitude difference between mother and stranger (Mother-Stranger) trials was not statistically different between the three outcome groups (Nc p = 0.72, N290 p = 0.88, P400 p = 0.91). Marginal effects analyses found that within the LR group, a greater Nc Mother-Stranger response was associated with better expressive language skills on the Mullen Scales of Early Learning, controlling for maternal education and outcome group effects (marginal effects dy/dx = 1.15; p < 0.01). No significant associations were observed between the Nc and language or social measures in HR-NoASD or HR-ASD groups. In contrast, specific to the HR-ASD group, amplitude difference between the Mother versus Stranger P400 response was positively associated with expressive (dy/dx = 2.1, p < 0.001) and receptive language skills at 12 months (dy/dx = 1.68, p < 0.005), and negatively associated with social affect scores on the Autism Diagnostic Observation Schedule (dy/dx = – 1.22, p < 0.001) at 18 months.

Conclusions: In 12-month-old infant siblings with subsequent ASD, increased P400 response to Mother over Stranger faces is positively associated with concurrent language and future social skills.

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.

Keywords: autism; behavior; developmental; genetic; genetic disorder; intellectual disability; models; mouse models; neurodevelopmental disorder; social; syndrome.

In this study we investigated the impact of parental language input on language development and associated neuroscillatory patterns in toddlers at risk of Autism Spectrum Disorder (ASD). Forty-six mother-toddler dyads at either high (n = 22) or low (n = 24) familial risk of ASD completed a longitudinal, prospective study including free-play, resting electroencephalography, and standardized language assessments. Input quantity/quality at 18 months positively predicted expressive language at 24 months, and relationships were stronger for high-risk toddlers. Moderated mediations revealed that input-language relationships were explained by 24-month frontal and temporal gamma power (30-50 Hz) for high-risk toddlers who would later develop ASD. Results suggest that high-risk toddlers may be cognitively and neurally more sensitive to their language environments, which has implications for early intervention.

Keywords: Autism; EEG; Early experience; Language development; Language input.

Autism Spectrum Disorder (ASD) is diagnosed three to four times more frequently in males than in females. Genetic studies of rare variants support a female protective effect (FPE) against ASD. However, sex differences in common inherited genetic risk for ASD are less studied, particularly within families. Leveraging the Danish iPSYCH resource, we found siblings of female ASD cases (n = 1,707) had higher rates of ASD than siblings of male ASD cases (n = 6,270; p < 1.0 × 10−10). In the Simons Simplex and SPARK collections, mothers of ASD cases (n = 7,436) carried more polygenic risk for ASD than fathers of ASD cases (n = 5,926; 0.08 polygenic risk score [PRS] SD; p = 7.0 × 10−7). Further, male unaffected siblings under-inherited polygenic risk (n = 1,519; p = 0.03). Using both epidemiologic and genetic approaches, our findings strongly support an FPE against ASD’s common inherited influences.

Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.

Keywords: 16p11.2 deletion; autism spectrum disorders; basic FGF; copy number variant; human NPCs; human iPSCs; macrocephaly; phospho-ERK signaling; proliferation.