Identification of Developmental and Behavioral Markers Associated with Genetic Abnormalities in Autism Spectrum Disorder

Objective: Aside from features associated with risk of neurogenetic syndromes in general (e.g., cognitive impairment), limited progress has been made in identifying phenotype-genotype relationships in autism spectrum disorder (ASD). The objective of this study was to extend work in the Simons Simplex Collection by comparing the phenotypic profiles of ASD probands with or without identified de novo loss of function mutations or copy number variants in high-confidence ASD-associated genes or loci.

Method: Analyses preemptively accounted for documented differences in sex and IQ in affected individuals with de novo mutations by matching probands with and without these genetic events on sex, IQ, and age before comparing them on multiple behavioral domains.

Results: Children with de novo mutations (N=112) had a greater likelihood of motor delay during early development (later age at walking), but they were less impaired on certain measures of ASD core symptoms (parent-rated social communication abnormalities and clinician-rated diagnostic certainty about ASD) in later childhood. These children also showed relative strengths in verbal and language abilities, including a smaller discrepancy between nonverbal and verbal IQ and a greater likelihood of having achieved fluent language (i.e., regular use of complex sentences).

Conclusions: Children with ASD with de novo mutations may exhibit a “muted” symptom profile with respect to social communication and language deficits relative to those with ASD with no identified genetic abnormalities. Such findings suggest that examining early milestone differences and standardized testing results may be helpful in etiologic efforts, and potentially in clinical differentiation of various subtypes of ASD, but only if developmental and demographic variables are properly accounted for first.

Keywords: Autism Spectrum Disorder; De Novo Mutations; Idiopathic ASD; Phenotype; Simons Simplex Collection; Syndromic ASD.

Whole-exome and whole-genome sequencing have facilitated the large-scale discovery of de novo variants in human disease. To date, most de novo discovery through next-generation sequencing focused on congenital heart disease and neurodevelopmental disorders (NDDs). Currently, de novo variants are one of the most significant risk factors for NDDs with a substantial overlap of genes involved in more than one NDD. To facilitate better usage of published data, provide standardization of annotation, and improve accessibility, we created denovo-db (http://denovo-db.gs.washington.edu), a database for human de novo variants. As of July 2016, denovo-db contained 40 different studies and 32,991 de novo variants from 23,098 trios. Database features include basic variant information (chromosome location, change, type); detailed annotation at the transcript and protein levels; severity scores; frequency; validation status; and, most importantly, the phenotype of the individual with the variant. We included a feature on our browsable website to download any query result, including a downloadable file of the full database with additional variant details. denovo-db provides necessary information for researchers to compare their data to other individuals with the same phenotype and also to controls allowing for a better understanding of the biology of de novo variants and their contribution to disease.

Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.

Many mammalian species, including humans, exhibit social behavior and form complex social groups. Mechanistic studies in animal models have revealed important roles for the endocannabinoid signaling system, comprising G protein-coupled cannabinoid receptors and their endogenous lipid-derived agonists, in the control of neural processes that underpin social anxiety and social reward, two key aspects of social behavior. An emergent insight from these studies is that endocannabinoid signaling in specific circuits of the brain is context dependent and selectively recruited. These insights open new vistas on the neural basis of social behavior and social impairment.

Keywords: 2-arachidonoyl-sn-glycerol; anandamide; autism spectrum disorder; schizophrenia; social anxiety; social reward.

The molecular mechanisms driving brain development at risk in autism spectrum disorders (ASDs) remain mostly unknown. Previous studies have implicated the transcription factor FOXP1 in both brain development and ASD pathophysiology. However, the specific molecular pathways both upstream of and downstream from FOXP1 are not fully understood. To elucidate the contribution of FOXP1-mediated signaling to brain development and, in particular, neocortical development, we generated forebrain-specific Foxp1 conditional knockout mice. We show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Using a genomics approach, we identified the transcriptional networks regulated by Foxp1 in the developing neocortex and found that such networks are enriched for downstream targets involved in neurogenesis and neuronal migration. We also uncovered mechanistic insight into Foxp1 function by demonstrating that sumoylation of Foxp1 during embryonic brain development is necessary for mediating proper interactions between Foxp1 and the NuRD complex. Furthermore, we demonstrated that sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. Together, these data provide critical mechanistic insights into the function of FOXP1 in the developing neocortex and may reveal molecular pathways at risk in ASD.

Keywords: autism; behavior; neocortex; neurogenomics; neuronal migration; sumoylation.

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.

Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.

Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.

Mutations/deletions in the SHANK3 gene are associated with autism spectrum disorders and intellectual disability. Here, we present electrophysiological and behavioral consequences in novel heterozygous and homozygous mice with a transcriptional stop cassette inserted upstream of the PDZ domain-coding exons in Shank3 (Shank3E13 ). Insertion of a transcriptional stop cassette prior to exon 13 leads to loss of the two higher molecular weight isoforms of Shank3. Behaviorally, both Shank3E13 heterozygous (HET) and homozygous knockout (KO) mice display increased repetitive grooming, deficits in social interaction tasks, and decreased rearing. Shank3E13 KO mice also display deficits in spatial memory in the Morris water maze task. Baseline hippocampal synaptic transmission and short-term plasticity are preserved in Shank3E13 HET and KO mice, while both HET and KO mice exhibit impaired hippocampal long-term plasticity. Additionally, Shank3E13 HET and KO mice display impaired striatal glutamatergic synaptic transmission. These results demonstrate for the first time in this novel Shank3 mutant that both homozygous and heterozygous mutation of Shank3 lead to behavioral abnormalities with face validity for autism along with widespread synaptic dysfunction. Autism Res 2017, 10: 42-65. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

Keywords: Phelan-McDermid syndrome; Shank3; autism spectrum disorder; grooming; mouse model; social interaction.

The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. In C. elegans, post-synaptic Neurexin (NRX-1) and pre-synaptic Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits acetylcholine (ACh) release at neuromuscular junctions. Here, we show that the retrograde signal decreases ACh release by inhibiting the function of pre-synaptic UNC-2/CaV2 calcium channels. Post-synaptic NRX-1 binds to an auxiliary subunit of pre-synaptic UNC-2/CaV2 channels (UNC-36/α2δ), decreasing UNC-36 abundance at pre-synaptic elements. Retrograde inhibition is mediated by a soluble form of NRX-1’s ectodomain, which is released from the post-synaptic membrane by the SUP-17/ADAM10 protease. Mammalian Neurexin-1α binds α2δ-3 and decreases CaV2.2 current in transfected cells, whereas Neurexin-1α has no effect on CaV2.2 reconstituted with α2δ-1 and α2δ-2. Collectively, these results suggest that α-Neurexin binding to α2δ is a conserved mechanism for regulating synaptic transmission.

Keywords: C. elegans; CACNA2D; Mef2; Neurexin; Neuroligin; autism; calcium channel; synaptic transmission.

The male bias in the incidence of autism spectrum disorders (ASDs) is one of the most notable characteristics of this group of neurodevelopmental disorders. The etiology of this sex bias is far from known, but pivotal for understanding the etiology of ASDs in general. Here we investigate whether a “three-hit” (genetic load × environmental factor × sex) theory of autism may help explain the male predominance. We found that LPS-induced maternal immune activation caused male-specific deficits in certain social responses in the contactin-associated protein-like 2 (Cntnap2) mouse model for ASD. The three “hits” had cumulative effects on ultrasonic vocalizations at postnatal day 3. Hits synergistically affected social recognition in adulthood: only mice exposed to all three hits showed deficits in this aspect of social behavior. In brains of the same mice we found a significant three-way interaction on corticotropin-releasing hormone receptor-1 (Crhr1) gene expression, in the left hippocampus specifically, which co-occurred with epigenetic alterations in histone H3 N-terminal lysine 4 trimethylation (H3K4me3) over the Crhr1 promoter. Although it is highly likely that multiple (synergistic) interactions may be at work, change in the expression of genes in the hypothalamic-pituitary-adrenal/stress system (e.g., Crhr1) is one of them. The data provide proof-of-principle that genetic and environmental factors interact to cause sex-specific effects that may help explain the male bias in ASD incidence.

Keywords: Cntnap2; autism; maternal immune activation; prenatal stress; sex differences.