Preliminary findings of similarities and differences in the signed and spoken language of children with autism

Approximately 30% of hearing children with autism spectrum disorder (ASD) do not acquire expressive language, and those who do often show impairments related to their social deficits, using language instrumentally rather than socially, with a poor understanding of pragmatics and a tendency toward repetitive content. Linguistic abnormalities can be clinically useful as diagnostic markers of ASD and as targets for intervention. Studies have begun to document how ASD manifests in children who are deaf for whom signed languages are the primary means of communication. Though the underlying disorder is presumed to be the same in children who are deaf and children who hear, the structures of signed and spoken languages differ in key ways. This article describes similarities and differences between the signed and spoken language acquisition of children on the spectrum. Similarities include echolalia, pronoun avoidance, neologisms, and the existence of minimally verbal children. Possible areas of divergence include pronoun reversal, palm reversal, and facial grammar.

Previous work has demonstrated that patterns of social attention hold predictive value for language development in typically developing infants. The goal of this research was to explore how patterns of attention in autistic, language delayed, and typically developing children relate to early word learning and language abilities. We tracked patterns of eye movements to faces and objects while children watched videos of a woman teaching them a series of new words. Subsequent test trials measured participants’ recognition of these novel word-object pairings. Results indicated that greater attention to the speaker’s mouth was related to higher scores on standardized measures of language development for autistic and typically developing children (but not for language delayed children). This effect was mediated by age for typically developing, but not autistic children. When effects of age were controlled for, attention to the mouth among language delayed participants was negatively correlated with standardized measures of language learning. Attention to the speaker’s mouth and eyes while she was teaching the new words was also predictive of faster recognition of those words among autistic children. These results suggest that language delays among children with autism may be driven in part by aberrant social attention, and that the mechanisms underlying these delays may differ from those in language delayed participants without autism.

Keywords: attention to faces; autism spectrum disorders; eye tracking; language development; word learning.

Atypical motor behaviors are common among children with autism spectrum disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among 6-month-olds at increased risk (high risk) for ASD (N1 = 129; N2 = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free-play) context than infants with no family history of ASD. Longitudinal assessments suggest that between 6 and 10 months, grasping activity increases in high-risk infants.

The social difficulties that are a hallmark of autism spectrum disorder (ASD) are thought to arise, at least in part, from atypical attention toward stimuli and their features. To investigate this hypothesis comprehensively, we characterized 700 complex natural scene images with a novel three-layered saliency model that incorporated pixel-level (e.g., contrast), object-level (e.g., shape), and semantic-level attributes (e.g., faces) on 5,551 annotated objects. Compared with matched controls, people with ASD had a stronger image center bias regardless of object distribution, reduced saliency for faces and for locations indicated by social gaze, and yet a general increase in pixel-level saliency at the expense of semantic-level saliency. These results were further corroborated by direct analysis of fixation characteristics and investigation of feature interactions. Our results for the first time quantify atypical visual attention in ASD across multiple levels and categories of objects.

Keywords: attention; autism spectrum disorder; center bias; eye tracking; faces; saliency; semantics; social cognition.

Autism spectrum disorders (ASD) are characterized by social impairments and restricted/stereotyped behaviors and currently affect an estimated 1 in 68 children aged 8 years old. While there has been substantial recent focus on ASD in research, both the biological pathology and, perhaps consequently, a fully effective treatment have yet to be realized. What has remained throughout is the hypothesis that ASD has neurobiological underpinnings and the observation that both the phenotypic expression and likely the underlying etiology is highly heterogeneous. Given the neurodevelopmental basis of ASD, a biologically based marker (biomarker) could prove useful not only for diagnostic and prognostic purposes, but also for stratification and response indices for pharmaceutical development. In this review, we examine the current state of the field for MEG-related biomarkers in ASD. We describe several potential biomarkers (middle latency delays [M50/M100], mismatch negativity latency, gamma-band oscillatory activity), and investigate their relation to symptomology, core domains of dysfunction (e.g., language impairment), and putative biological underpinnings.

Keywords: ASD; Gamma; MEG; biomarker; latency delay; signature; translational.

We report the first study on pronoun use by an under-studied research population, children with autism spectrum disorder (ASD) exposed to American Sign Language from birth by their deaf parents. Personal pronouns cause difficulties for hearing children with ASD, who sometimes reverse or avoid them. Unlike speech pronouns, sign pronouns are indexical points to self and other. Despite this transparency, we find evidence from an elicitation task and parental report that signing children with ASD avoid sign pronouns in favor of names. An analysis of spontaneous usage showed that all children demonstrated the ability to point, but only children with better-developed sign language produced pronouns. Differences in language abilities and self-representation may explain these phenomena in sign and speech.

Objective: Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms.

Methods: Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion.

Results: Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology.

Interpretation: Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD.

The intraparietal sulcus (IPS), a region in the dorsal attention network (DAN), has been implicated in multi-sensory attention and working memory. Working memory and attention develop across childhood; changes in functional connectivity within the DAN may relate to this maturation. Previous findings regarding fronto-parietal intrinsic functional connectivity age-effects were mixed. Our study aimed to circumvent limitations of previous work using a large cross-sectional sample, 183 typically developing participants 6.5-20 years, from the Autism Brain Imaging Data Exchange, and seed regions along the anterior-to-posterior axis of the IPS. These seeds, IPS0-4, were entered into functional connectivity models. Group-level models investigated differential connectivity along the IPS and relationships with age. Anterior IPS3/4 exhibited greater connectivity with sensorimotor/pre-motor regions. Posterior IPS0/1 demonstrated greater connectivity with dorsal and ventral visual regions. Positive age-effects were found between IPS3-4 and visual regions. Negative age-effects were found between IPS and superior parietal and medial orbitofrontal cortices. Follow-up region of interest analyses were used to estimate age-effects for DAN and anticorrelated default mode network regions. Results suggest age-effects on IPS functional connectivity are relatively modest, and may differ pre- and across-adolescence. Studying typical age-related connectivity variability within this network may help to understand neurodevelopmental disorders marked by impaired attention.

Keywords: Attention; Functional connectivity; IPS; Resting-state fMRI; Visual-spatial; Visuotopic.

Autism spectrum disorder (ASD) is a behaviorally defined and heterogeneous disorder. Biomarkers for ASD offer the opportunity to improve prediction, diagnosis, stratification by severity and subtype, monitoring over time and in response to interventions, and overall understanding of the underlying biology of this disorder. A variety of potential biomarkers, from the level of genes and proteins to network-level interactions, is currently being examined. Many of these biomarkers relate to inhibition, which is of particular interest because in many cases ASD is thought to be a disorder of imbalance between excitation and inhibition. Abnormalities in inhibition at the cellular level lead to emergent properties in networks of neurons. These properties take into account a more complete genetic and cellular background than findings at the level of individual genes or cells, and are able to be measured in live humans, offering additional potential as diagnostic biomarkers and predictors of behaviors. In this review we provide examples of how altered inhibition may inform the search for ASD biomarkers at multiple levels, from genes to cells to networks.

We sought to determine the potential effects of pooling on power, false positive rate (FPR), and bias of the estimated associations between hypothetical environmental exposures and dichotomous autism spectrum disorders (ASD) status. Simulated birth cohorts in which ASD outcome was assumed to have been ascertained with uncertainty were created. We investigated the impact on the power of the analysis (using logistic regression) to detect true associations with exposure (X₁) and the FPR for a non-causal correlate of exposure (X₂, r = 0.7) for a dichotomized ASD measure when the pool size, sample size, degree of measurement error variance in exposure, strength of the true association, and shape of the exposure-response curve varied. We found that there was minimal change (bias) in the measures of association for the main effect (X₁). There is some loss of power but there is less chance of detecting a false positive result for pooled compared to individual level models. The number of pools had more effect on the power and FPR than the overall sample size. This study supports the use of pooling to reduce laboratory costs while maintaining statistical efficiency in scenarios similar to the simulated prospective risk-enriched ASD cohort.

Keywords: autism spectrum disorders; measurement error; pooling.

This study examined vocal coordination during mother-infant interactions in the infant siblings (high risk infants; HR) of children with autism spectrum disorder (ASD), a population at heightened risk for developing language delays. Vocal coordination between mothers and HR infants was compared to a group of low risk (LR; no first- or second-degree relative with ASD) dyads, and used to predict later language development. Nine-month-old infants were videotaped at home playing with their mothers, and interactions were coded for the frequency and timing of vocalizations. Percent infant simultaneous speech was predictive of later language delay (LD), and dyads with LD infants were less coordinated with one another in average latency to respond than dyads with non-delayed (ND) infants. The degree of coordination between mothers and infants on this variable predicted a continuous measure of language development in the third year. This research underscores the importance of understanding early development in the context of interaction.

Keywords: Parent-infant interaction; coordination; high risk siblings; language development.

Variation in the odds ratio (OR) resulting from selection of cutoffs for categorizing continuous variables is rarely discussed. We present results for the effect of varying cutoffs used to categorize a mismeasured exposure in a simulated population in the context of autism spectrum disorders research. Simulated cohorts were created with three distinct exposure-outcome curves and three measurement error variances for the exposure. ORs were calculated using logistic regression for 61 cutoffs (mean ± 3 standard deviations) used to dichotomize the observed exposure. ORs were calculated for five categories with a wide range for the cutoffs. For each scenario and cutoff, the OR, sensitivity, and specificity were calculated. The three exposure-outcome relationships had distinctly shaped OR (versus cutoff) curves, but increasing measurement error obscured the shape. At extreme cutoffs, there was non-monotonic oscillation in the ORs that cannot be attributed to “small numbers.” Exposure misclassification following categorization of the mismeasured exposure was differential, as predicted by theory. Sensitivity was higher among cases and specificity among controls. Cutoffs chosen for categorizing continuous variables can have profound effects on study results. When measurement error is not too great, the shape of the OR curve may provide insight into the true shape of the exposure-disease relationship.

Keywords: autism spectrum disorders; categorization; dichotomization; epidemiology methods; misclassification.