Technology in Treatments: What do parents think?

By Meghan Miller, PhD

Kids playing with a tablet

More and more, researchers and clinicians are thinking about how advances in technology can be leveraged for interventions for children with autism. Tablets, computers, and video games have become increasingly available to children in their daily lives. At the same time, the American Academy of Pediatrics has put forth clear screen time guidelines for children, and many parents worry about their children spending too much time in front of a screen or with devices.

In the autism field, technology is providing promising avenues for early detection and intervention. For example, a recent study describes the use of mobile technology to screen for autism in young children. Others have developed apps and virtual reality systems through which treatments can be delivered. But what good are advances in technology-based interventions if parents aren’t interested in utilizing them?

Researchers at the UC Davis MIND Institute on the UC Davis Medical Center campus in Sacramento are conducting a study of parental perceptions of use of technology in treatment of impulsivity in 4 to 7-year-olds with autism spectrum disorder. Parents of 4 to 7-year-old children who have been diagnosed with autism spectrum disorder (ASD) can participate. Families can expect to complete of several online questionnaires about: Your family, your opinions about technology in treatment, and your child’s behavior. These questionnaires will take about 10 minutes of your time.

Take our survey: http://bit.ly/autismtechsurvey

Learn more here: https://studypages.com/s/technology-in-treatment-study-364017/

On this week’s ASF podcast, regression—what is it and who can see it? Using the right tools, both parents and clinicians can see that many more children with autism than thought show regression, a gradual decline or loss of skills starting at around 12 months of age and showing continual declines until 36 months of age. In 2016, a National Institutes of Health (NIH) committee concluded that regression is due to biological events that disrupt the formation of specific brain circuits at critical times in development.

On this week’s podcast, a study led by Elizabeth Berg in the lab of Dr. Jill Silverman at UC Davis published in the journal Autism Research demonstrated SHANK3’s role in core social communication deficits in a rat model of autism. Rats exhibit both receptive and expressive communication. SHANK3 mutations are seen in those with Phelan-McDermid Syndrome as well as in 1% of people with autism. This new study opens up new ways to understand autism symptoms in an animal model, and moves autism research using animals forward significantly.